Kategorie-Archiv: Wissen

Krankheitsforschung ohne Umwege

Wissenschaftler, die die Ursachen wichtiger Erkrankungen erforschen und Therapien entwickeln, sind auf geeignete Modellorganismen angewiesen. Forscher der Universität Bonn haben nun eine neuartige Methode entwickelt, mit der sich solche maßgeschneiderten Krankheitsmodelle effizienter erschaffen lassen. Die Technologie kürzt den herkömmlichen Weg um rund ein Jahr ab. Die Ergebnisse werden jetzt in „Nature Communications“ vorgestellt.

Marc Beyer und David Sommer
Dr. Marc Beyer (links) und Daniel Sommer vom LIMES-Institut der Universität Bonn beim Beladen des Pipettierroboters für die Herstellung der TALENs. (c) Foto: Volker Lannert/Uni Bonn

Wie funktioniert das Immunsystem? Für welche Funktionen ist ein bestimmtes Gen verantwortlich? Wissenschaftler untersuchen solche medizinischen und biologischen Fragestellungen, um drängende Fragen zu Erkrankungen zu beantworten. Sie schalten hierfür in Modellorganismen bestimmte Gene in Immunzellen aus oder fügen ein künstliches Erbgutstück mit neuen Eigenschaften, z.B. ein fluoreszierend leuchtendes Reporterprotein, hinzu. Hierdurch kann dann die Wirkungsweise und Lokalisation dieser Proteine näher untersucht werden.

Ein wichtiges Protein für die Funktion von Immunzellen ist SATB1; ein Faktor, der an der Ablesung der DNA beteiligt und für die Aktivierung von Immunzellen notwendig ist, um bei einer Infektion die eindringenden Mikroorganismen wirkungsvoll zu bekämpfen. „Dann beobachten wir, welche Folgen diese Veränderungen in der Expression von SATB1 für Immunzellen haben und können daraus auf die Funktionsweise des untersuchten Gens schließen“, sagt Dr. Marc Beyer vom Life and & Medical Sciences (LIMES) Institut der Universität Bonn.

Voraussetzung für die Untersuchung solch wichtiger immunologischer Fragestellungen sind geeignete Tiermodelle. „Die Herstellung dieser Modelle ist ein sehr zeit- und arbeitsaufwendiger Prozess“, erklärt Dr. Beyer. Inklusive aller Vorarbeiten und Kreuzungsversuche dauere es im Schnitt ein bis zwei Jahre, bis zum Beispiel ein neues Modell in der Maus etabliert wird. Für die Generierung neuer Mausmodelle greifen die Wissenschaftler bislang auf embryonale Stammzellen der Tiere zurück. Die Gene in den Stammzellen werden verändert und anschließend in einen Embryo implantiert, aus dem dann der Organismus heranwächst.

Mit speziellen Erbgutscheren lässt sich der Weg abkürzen

Wissenschaftler des LIMES-Instituts der Universität Bonn und des Hauses für experimentelle Therapie des Universitätsklinikums Bonn haben nun eine neue Methode entwickelt, mit der sich der Weg zum gewünschten Tiermodell um etwa ein Jahr abkürzen lässt. Sie nutzten sogenannte „TALENs“ (Transcription activator-like effector nucleases), mit denen sie den Erbgutstrang von Mäusen an einer bestimmten Stelle durchschnitten. Diese neuen Erbgutscheren verwenden Wissenschaftler erst seit einigen Jahren, um Genveränderungen auf Zellebene durchzuführen. „Unserem Team gelang es nun erstmals, mit den TALENs künstliches Erbgut direkt in das Genom eines lebenden Organismus einzubringen“, berichtet der Forscher der Universität Bonn. Die aufwendigen Vorarbeiten mit den Stammzellen entfielen dabei.

Die Wissenschaftler injizierten die TALENs zusammen mit einem künstlichen DNA-Abschnitt in die befruchtete Eizelle einer Maus. Die Genscheren schnitten dabei den Erbgutdoppelstrang an einer ganzen bestimmten Stelle durch, wodurch sich das künstliche Erbgutstück dort automatisch einfügte. Dabei nutzten die Wissenschaftler den natürlichen Mechanismus aus, mit dem Zellen Erbgutveränderungen reparieren. Die auf diese Weise veränderte Eizelle wurde dann von einer anderen Maus ausgetragen. Daraus entstand ein Tier, mit dem sich jetzt die Funktion von SATB1 in unterschiedlichen Immunzellen einfach untersuchen lässt.

Viele aufwendige Schritte entfallen

„Bei unserer Methode entfallen viele aufwendige Schritte, die bei der herkömmlichen Technik erforderlich sind“, sagt der LIMES-Forscher. Die Wissenschaftler stellten unter Beweis, dass sich mit der neuen Methode auch sehr komplexe DNA-Fragmente in Modellorganismen einbringen lassen. „Mit den TALENs ist es gelungen, ein neues Verfahren zu entwickeln, mit dem neue Mauslinien, z.B. auch für Krankheitsmodelle, auf relativ einfache Weise etabliert werden können“, resümiert der Forscher. Damit werde eine wichtige Grundlage geschaffen, um mit Hilfe von Tiermodellen drängende Fragen in der Medizin und den Grundlagenwissenschaften effizienter zu erforschen.

Für die Funktion von SATB1 bedeutet dies, dass die Forscher in T Lymphozyten jetzt durch die Kreuzung mit anderen Mauslinien SATB1 spezifisch ausschalten können und die Frage beantworten werden, wie SATB1 die Antwort des Immunsystem gegen Krankheitserreger kontrolliert.

Publikation: Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases”, Nature Communications, DOI: 10.1038/ncomms4045

Kosmische Raserei

Die Lokale Gruppe, in der sich unser Milchstraßensystem befindet, rast mit rund zwei Millionen Stundenkilometern durch das Weltall. Wissenschaftler rätseln, was die Ursache für diese kosmische Raserei ist. Ein internationales Forscherteam unter wesentlicher Beteiligung von Physikern der Universität Bonn kommt zu dem Schluss, dass neben dem gigantischen Shapley-Superhaufen eine weitere riesige Masse mit ihrer Gravitation die Lokale Gruppe auf Touren bringt. Die Ergebnisse sind im Fachjournal “Astronomy & Astrophysics” vorab online veröffentlicht. Die Printausgabe erscheint voraussichtlich in den nächsten Wochen.

Mit der Andromeda-Galaxie, dem Dreiecksnebel (M33) und kleineren Galaxien bildet das Milchstraßensystem die Lokale Gruppe, die mit rund zwei Millionen Stundenkilometern durch das Universum rast. „Der Grund für die rasante Fahrt und die Ursache für ihre Bewegungsrichtung sind bis heute nicht schlüssig erklärt“, sagt Prof. Dr. Marek Kowalski vom Physikalischen Institut der Universität Bonn. Ein internationales Forscherteam aus den USA, Frankreich, Australien und China hat unter wesentlicher Beteiligung der Physiker der Universität Bonn nun einen Ansatz gefunden, wie sich das Bewegungsprofil der Lokalen Gruppe erklären lässt. In dem Konsortium ist auch der US-Astrophysiker Prof. Dr. Saul Perlmutter vertreten, der im Jahr 2011 den Physik-Nobelpreis erhielt.

Im Rahmen des Supernova-Factory-Projekts nutzte das internationale Wissenschaftlerteam mehr als 100 Supernovae-Beobachtungen vom Typ Ia mit dem 2,2-Meter-Teleskop der Universität Hawaii auf dem Gipfel des Vulkans Mauna Kea. Bei Supernovae handelt es sich um Sterne, die am Ende ihrer Lebenszeit in einer gigantischen Explosion so hell wie eine ganze Galaxie aufleuchten. Die Forscher verwendeten sie als eine Art Leuchttürme im All: „Anhand ihrer Helligkeit können wir feststellen, wie weit entfernt die Supernovae sind und mit welcher Geschwindigkeit sie sich im Weltraum bewegen“, erklärt Prof. Marek Kowalski.

Die Forscher teilen den Weltraum in Zwiebelschalen auf

Wie bei einer Zwiebel teilten die Forscher den Weltraum um die Erde in einzelne kugelförmige Schalen auf und bestimmten anhand der sich darin befindenden Supernovae die Geschwindigkeit und Bewegungsrichtung dieser Teilräume. „Unsere Hypothese war, dass für die Bewegung der Lokalen Gruppe die Anziehungskraft einer gigantische Masse die Ursache ist“, sagt Ulrich Feindt, Doktorand bei Prof. Kowalski und Erstautor der Studie. In der Vorzugsrichtung der durch das Universum rasenden Lokalen Gruppe befindet sich der Shapley-Superhaufen (SCI 124), die größte Ansammlung von Sternensystemen in einer Entfernung von 650 Millionen Lichtjahren zur Milchstraße.

„Unsere Berechnungen ergaben jedoch, dass die Gravitation des Shapley-Superhaufens nicht ausreicht, um das Geschwindigkeitsprofil der Lokalen Gruppe zu erklären“, berichtet Prof. Kowalski. „Wir müssten eine zweite, noch einmal annähernd gleichgroße Masse hinzufügen, um auf die erforderliche Anziehungskraft zu kommen.“ Die Wissenschaftler vermuten, dass es sich bei dieser rätselhaften gigantischen Masse um eine lockere Ansammlung verschiedener Galaxien handeln könnte, der sogenannten Sloan Great Wall. Die Gravitation dieser Agglomeration und des Shapley-Superhaufens zusammen könnten nach den Erkenntnissen der Forscher sowohl die Geschwindigkeit als auch die Bewegungsrichtung der Lokalen Gruppe erklären.

Einfluss noch aus einer Milliarde Lichtjahre Entfernung

Die Studie ist die bislang umfassendste zum Thema. Das internationale Forscherkonsortium verwendete ein Schalenmodell und Daten, die nahezu doppelt so tief in den Weltraum hineinreichen wie die vorangegangener Arbeiten. „Wir konnten damit zeigen, dass Strukturen in rund einer Milliarde Lichtjahre Entfernung noch einen Einfluss auf die Bewegung der Lokalen Gruppe haben“, sagt Prof. Kowalski. Damit verbunden sind sehr grundsätzliche Fragen der Kosmologie: Ist das Universum auf großen Skalen in alle Raumrichtungen gleichartig beschaffen? „Unsere Untersuchungen zeigen, dass diese Grundannahme im Standardmodell der Kosmologie hier an ihre Grenzen stößt“, sagt Prof. Kowalski. Denn die Kräfte, die die Strukturen im Weltraum beeinflussen, wirkten auch im ganz Großen.

Publikation: Measuring cosmic bulk flows with Type Ia Supernovae from the Nearby Supernova Factory, Journal “Astronomy & Astrophysics”, DOI: 10.1051/0004-6361/201321880

 

Datenkompression im Gehirn

Zehn Millionen Bits – das ist die Information, die das Auge bei schnellen Blickbewegungen in jeder Sekunde an das Großhirn übermittelt. Wie die primäre Sehrinde, die Eingangsstation für Informationen des Sehsinns im Gehirn, diese Daten weiterverarbeitet, beschreiben Forscher der Ruhr-Universität Bochum (RUB) und der Universität Osnabrück in der Fachzeitschrift „Cerebral Cortex“. Mit einem neuen optischen Verfahren wiesen sie nach, dass das Gehirn nicht immer die vollständige Bildinformation überträgt. Stattdessen bedient es sich der Unterschiede zwischen aktuellen und zuvor gesehenen Bildern.

Effiziente Reduktion der Datenmenge

Bislang gingen Forscher davon aus, dass Informationen in der Eingangsstation des Sehsinns weitestgehend vollständig an höhere Gehirnareale weitergeleitet werden und dort zu Bildeindrücken führen. „Es ist daher überraschend, dass bereits in der Sehrinde, dem Flaschenhals auf dem Weg in das Großhirn, eine erhebliche Reduktion der Datenmenge erfolgt“, sagt PD Dr. Dirk Jancke vom Institut für Neuroinformatik der RUB. „Intuitiv würde man denken, dass unser Sehsystem ähnlich wie eine Videokamera fortwährend Bilder erzeugt. Wir zeigen hingegen, dass die Sehrinde redundante Informationen energiesparend unterdrückt, indem sie häufig nur Bilddifferenzen weiterleitet.“

Plus oder minus: zwei Codierungsstrategien des Gehirns

Die Forscher registrierten die Antworten von Nervenzellen auf natürliche Bildsequenzen, zum Beispiel Szenen, in denen Vegetationslandschaften oder Gebäude abgebildet waren. Von den Bildern erstellten sie zwei Versionen: eine vollständige und eine, in der sie gezielt bestimmte Elemente entfernten, nämlich vertikale oder horizontale Konturen. War die Zeitspanne zwischen den einzelnen Bildern kurz, 30 Millisekunden, repräsentierten die Nervenzellen die vollständige Bildinformation. Das änderte sich bei Sequenzen mit Zeitabständen über 100 Millisekunden. Nun repräsentierten die Zellen ausschließlich neu hinzukommende oder fehlende Elemente, also Bilddifferenzen. „Wenn wir eine Szene analysieren, führt das Auge sehr schnelle Miniaturbewegungen aus, um die feinen Details zu erfassen“, erklärt Nora Nortmann, Doktorandin am Institut für Kognitionspsychologie der Universität Osnabrück und der RUB-Arbeitsgruppe Optical Imaging. Die Sehrinde leitet diese Detailinformationen vollständig und unmittelbar weiter. „Bei Blickwechseln, die etwas mehr Zeit in Anspruch nehmen, codiert sie hingegen, was sich in den Bildern ändert“, so die Doktorandin weiter. Dadurch stechen bestimmte Bildbereiche hervor, und interessante Orte lassen sich leicht detektieren, spekulieren die Forscher.

„Unser Gehirn schaut permanent in die Zukunft“

Die Studie zeigt, wie Aktivitäten von visuellen Nervenzellen durch vergangene Ereignisse beeinflusst sind. „Die Zellen bauen eine Art Kurzzeitgedächtnis auf, das konstante Eingänge speichert“, erklärt Dirk Jancke. Ändert sich abrupt etwas im wahrgenommenen Bild, generiert das Gehirn auf Basis der vergangenen Bilder eine Art Fehlersignal. Dieses Signal spiegelt dann nicht den aktuellen Eingang wider, sondern wie der aktuelle Eingang von der Erwartung abweicht. Bislang nahmen Forscher an, dass diese sogenannte prädiktive Codierung nur in höheren Gehirnarealen stattfindet. „Wir zeigen, dass das Prinzip bereits für frühe Stufen der kortikalen Verarbeitung zutrifft“, resümiert Jancke. „Unser Gehirn schaut permanent in die Zukunft und vergleicht aktuelle Eingänge mit Erwartungen, die sich aus vergangenen Situationen ergeben.“

Gehirnaktivität im Millisekundenbereich beobachten

Um die Dynamik der Nervenzellaktivität im Gehirn im Millisekundenbereich zu verfolgen, verwendeten die Wissenschaftler spannungsabhängige Farbstoffe. Diese Stoffe fluoreszieren, wenn Nervenzellen elektrische Impulse erhalten und aktiv werden. Ein hochauflösendes Kamerasystem und eine anschließende computergestützte Analyse erlauben, die Nervenzellaktivität über Oberflächen von mehreren Quadratmillimetern Größe zu messen. Auf diese Weise entsteht ein zeitlich und räumlich präziser Film der Verarbeitungsprozesse in neuronalen Netzwerken.

Titelaufnahme

N. Nortmann, S. Rekauzke, S. Onat, P. König, D. Jancke (2013): Primary visual cortex represents the difference between past and present, Cerebral Cortex, DOI: 10.1093/cercor/bht318

Link:
Webseite des Real Time Optical Imaging Lab

Im Wohnzimmer nach schwarzen Löchern suchen

Im Wohnzimmer nach schwarzen Löchern suchen – dazu ruft das Team vom Projekt „Radio Galaxy Zoo“ auf. Die Astronomen suchen Freiwillige, die sie dabei unterstützen, schwarze Löcher auf Bildern zu identifizieren. Aufgabe ist es, Radiostrahlung und Infrarotstrahlung von Galaxien einander zuzuordnen – eine Anleitung dafür steht auf der Webseite radio.galaxyzoo.org bereit. „Bisher ist noch jeder Computeralgorithmus daran gescheitert, eine solche Aufgabe zuverlässig zu erledigen“, sagt Dr. Enno Middelberg vom Astronomischen Institut der Ruhr-Universität. „Am sichersten können das immer noch Menschen.“

Radiostrahlung und Infrarotstrahlung zuordnen

Auf der Webseite radio.galaxyzoo.org sehen die Hobby-Forscher überlappende Bilder von Radiostrahlung und Infrarotstrahlung von Galaxien. Radiowellen entstehen oft in anderen Gebieten als Infrarotwellen und haben deswegen eine völlig andere Form. Manchmal überlappen sich diese Gebiete nicht einmal. Trotzdem gilt es herauszufinden, ob Radio- und Infrarotstrahlung zur gleichen Galaxie gehören. Mit etwas Übung kann jeder diese Aufgabe bewerkstelligen. Bei schwierigen Fällen hilft das internationale Astronomen-Team. „Wenn sich viele Freiwillige Tausende von Bildern anschauen, kommt es fast zwangsläufig zu völlig unerwarteten Entdeckungen“, weiß Enno Middelberg.

Gegenseitigen Einfluss von schwarzen Löchern und Sternen untersuchen

Unterschiedliche Mechanismen erzeugen Radio- und Infrarotstrahlung in Galaxien. Schwarze Löcher in den Zentren von Galaxien sind in der Regel die Produzenten von Radiostrahlung. Junge, große Sterne hingegen erzeugen meist Infrarotstrahlung. Die Radiostrahlung des schwarzen Lochs hat einen Einfluss darauf, wie viele Sterne entstehen können. „Dieser Zusammenhang gibt den Astronomen große Rätsel auf“, meint der Bochumer Forscher. „Die Ergebnisse des ‚Radio Galaxy Zoo‘ werden über die nächsten Jahre eine unschätzbare Quelle von Informationen sein, um den gegenseitigen Einfluss von schwarzen Löchern und Sternen zu untersuchen.“

„Galaxy Zoo“ – eine Anlaufstelle für wissenschaftliche Mitmachprojekte

Vor einigen Jahren startete die Webseite www.zooniverse.org als „Galaxy Zoo“; inzwischen ist die Webseite eine Anlaufstelle für verschiedene wissenschaftliche Mitmachprojekte: Galaxien klassifizieren, Walgesänge zuordnen, Logbücher der „British Royal Navy“ in Klartext übertragen oder tropische Stürme identifizieren. All diese Projekte suchen Freiwillige, um Aufgaben zu erledigen, die schlecht oder gar nicht von Computern gemeistert werden.

Related Posts Plugin for WordPress, Blogger...