Schlagwort-Archiv: Rekord

Geschwindigkeitsrekord im Gehirn

Nervenzellen im Gehirn können Informationen mit erstaunlich hoher Geschwindigkeit austauschen, nämlich 1.000 Mal pro Sekunde. Ein wichtiger Faktor für die schnelle Informationsverarbeitung. Neurophysiologen der Universität Leipzig haben ein neues Verfahren entwickelt, mit dem sie Aktionspotenziale vor und hinter einer Kontaktstelle von zwei Nervenzellen messen können. Ihre Ergebnisse sind aktuell in der angesehenen neurowissenschaftlichen Zeitschrift „Neuron“ erschienen.

Nervenzellen im Gehirn ticken enorm schnell. Foto: Stefan Hallermann
Nervenzellen im Gehirn ticken enorm schnell.
Foto: Stefan Hallermann

Wie schnell tickt unser Gehirn? Die Antwort brachte für das Wissenschaftlerteam um Prof. Dr. Stefan Hallermann vom Carl-Ludwig-Institut für Physiologie eine überraschende Erkenntnis: Zusätzlich zu ihrer großen Anzahl und hohen Vernetzung ticken Nervenzellen im Gehirn auch noch enorm schnell. Das menschliche Gehirn hat ungefähr 100 Milliarden Nervenzellen. Jede von ihnen ist durchschnittlich mit tausend anderen verbunden.

Diese immense Parallelität allein führt schon zu Beschleunigung. Damit aber nicht genug, zusätzlich feuert jede Nervenzelle ihre elektrischen Signalreize auch noch mit enormer Geschwindigkeit an ihre Nachbarn weiter. Die Wissenschaftler sprechen von Aktionspotenzialen. Bisher galt die Einheit von 100 Hertz in den Lehrbüchern als Standard. Die Leipziger haben jetzt 1.000 Hertz gemessen.

„Im Experiment haben wir die Höchstleistung künstlich geschaffen, indem wir die Zellen bei maximaler Stimulation bis an ihre Leistungsgrenze führten“, sagt Hallermann. „Aber die Tatsache, dass die Zellen so schnell feuern können, spricht für mich dafür, dass das Potenzial auch benutzt wird.“ Mehr als die Frequenz habe ihn jedoch überrascht, so der Neurophysiologe, dass die Aktionspotenziale in der Zelle so kurz, also ultraschnell, sind. Kurze Aktionspotenziale machen den Weg frei, schnell danach ein weiteres hinterher feuern zu können. „Wenn die Aktionspotenziale länger wären, beispielsweise eine Millisekunde, wären Frequenzen von 1.000 Hertz nicht möglich,“ erläutert einer der Erstautoren, Dr. Igor Delvendahl.

Mit neuer Messmethode zum Erfolg

Die zweite überraschende Erkenntnis der Arbeit ist, dass die Aktionspotenziale zur nächsten Zelle übertragen werden. Diese Erkenntnis konnte nur gewonnen werden, weil die Leipziger Wissenschaftler ein kompliziertes Messverfahren an den Kontaktstellen von zwei Nervenzellen (Synapsen) entwickelten. Diese methodische Weiterentwicklung macht einen großen Teil der wissenschaftlichen Arbeit aus. Bei der sogenannten „patch-clamp-Technik“ werden winzige Glaspipetten mit einem Durchmesser von einem Mikrometer an die Zellen herangefahren, um ihre elektrischen Signale zu messen.

Die Herausforderung war es, eine Pipette auf die Signale sendenden feinen Enden (Axone oder auch präsynaptischen Endigungen) sowie gleichzeitig eine zweite Pipette auf den Zellkörper der empfangenden Zelle zu positionieren. Um die präsynaptischen Endigungen besser finden zu können, haben die Wissenschaftler sie fluoreszierend eingefärbt. Es gibt wenige Stellen im Gehirn, an denen derartige Paarableitungen von der prä- und postsynaptischen Zelle möglich sind. Deshalb ist die neue Messmethode ein technischer Durchbruch.

Rennen und einem unerwarteten Hindernis ausweichen: Die Wissenschaft weiß noch nicht, wo genau solch schnelle Entscheidungen im Gehirn entstehen, wahrscheinlich arbeiten mehrere Areale zusammen. Die Leipziger haben sich deshalb auf ein Areal konzentriert, bei dem ein Großteil der sensorischen Information landet und weitergegeben werden muss. Damit es an solch einer Stelle nicht zu einer Art Verkehrsstau kommt, müssen die Informationen möglichst schnell über kurze Aktionspotenziale weitergegeben werden. Wie eine schnelle Signalweitergabe an die Muskeln funktioniert, ist bislang noch nicht geklärt, weil es technisch nicht leicht ist, solche hohen Frequenzen zu analysieren. „Für den Neurostandort Leipzig ist es wichtig, dass wir im Team solche international sichtbaren Publikationen zustande bringen.

Das ebnet letztlich den Weg, gute Mitarbeiter zu gewinnen und Forschungsverbünde aufzubauen“, ist Hallermann überzeugt. Den Mediziner und Physiker fasziniert es, mit naturwissenschaftlichen Methoden und hochtechnischen Mikroskopen die Informationsverarbeitung im Gehirn zu untersuchen. Langfristig hat er die Hoffnung, dass mit Hilfe der Grundlagenforschung die Hirnfunktionen besser verstanden werden, um dann bei neurologischen oder psychiatrischen Erkrankungen zu einer besseren Therapie zu kommen.

Fachveröffentlichung:
Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse
DOI: 10.1016 / j.neuron.2014.08.036

Mathematiker stellen neuen Rekord auf

Prof. Dr. Jens Vygen vom Forschungsinstitut für Diskrete Mathematik der Universität Bonn. (c) Foto: Barbara Frommann/Uni Bonn
Prof. Dr. Jens Vygen vom Forschungsinstitut für Diskrete Mathematik der Universität Bonn. (c) Foto: Barbara Frommann/Uni Bonn

Wie lässt sich eine Rundreise organisieren?

Wie lässt sich eine Rundreise durch verschiedene Städte auf dem kürzesten Weg organisieren? Darüber zerbrechen sich nicht nur Paketdienste, Handlungsreisende und Touristen den Kopf, sondern seit vielen Jahrzehnten auch Mathematiker. Eine endgültige Lösung des Problems für eine große Zahl von Orten ist noch nicht gelungen, aber Forscher der Universitäten Bonn und Grenoble haben einen Algorithmus gefunden, der mit Abstand die beste Näherung liefert. Sie berichten in der Fachzeitschrift „Combinatorica“ über ihre Ergebnisse, deren Druckausgabe nun vorliegt.

Wie lässt sich die Reihenfolge für den Besuch mehrerer Orte so wählen, dass die gesamte Route möglichst kurz ist? „Dieses Rundreiseproblem klingt trivial, ist aber eine harte Nuss“, sagt Prof. Dr. Jens Vygen vom Forschungsinstitut für Diskrete Mathematik der Universität Bonn. Seit mehr als 60 Jahren zerbrechen sich Mathematiker darüber den Kopf – ohne es bislang gelöst zu haben. „Dieses populäre Problem hat seit Jahrzehnten eine zentrale Bedeutung für die mathematische Optimierung: Viele ursprünglich dafür entwickelte Methoden kamen später auch bei ganz anderen Problemen zum Einsatz“, erläutert sein Kollege Prof. Dr. András Sebö von der Universität Grenoble. „Es müssen beim Rundreiseproblem auch nicht unbedingt Städte sein, die durchlaufen werden sollen – sehr oft sucht man beispielsweise auch eine optimale Reihenfolge von Arbeitsschritten.“

Komplexität überfordert sogar Supercomputer

Mit wenigen Orten lässt sich die Aufgabe noch relativ einfach lösen, indem man die Weglängen aller möglichen Rundreisen berechnet und dann die kürzeste auswählt. Mit der Zahl der zu besuchenden Orte nimmt aber die Komplexität des Problems und damit die Rechenzeit rasch zu und überfordert dann auch die schnellsten Supercomputer. Mit 15 Städten gibt es bereits mehr als 43 Milliarden verschiedene Rundreisen, aus denen die kürzeste auszuwählen ist. Mit 18 Städten steigt die Zahl der Möglichkeiten auf über 177 Billionen an – und so weiter.

„Viele Mathematiker vermuten, dass das Rundreiseproblem für eine große Anzahl von Städten überhaupt nicht lösbar ist“, berichten die beiden Wissenschaftler. Das ist aber noch nicht bewiesen. Bislang ist es den Mathematikern jedoch gelungen, sich mit verschiedenen Verfahren der optimalen Route anzunähern. Es handelt sich dabei um Kompromisslösungen mit dem Vorteil einer überschaubaren Rechenzeit, aber Abstrichen hinsichtlich der kürzesten Weglänge. Wenn zum Beispiel vorgegeben ist, dass die Gesamtstrecke insgesamt doppelt so lang sein darf wie die optimale Route, dann lässt sich das relativ einfach umsetzen: Zu jedem Punkt ist dann ein Hin- und Rückweg erlaubt.

Neuer Rekord liegt beim 1,4-fachen der optimalen Strecke

Lange Zeit hielt Nicos Christofides den Rekord: 1976 veröffentlichte er einen Algorithmus, der eine Rundreise ergab, die maximal um die Hälfte länger als die optimale Tour ist. 35 Jahre später gelang es Mathematikern aus Nordamerika erstmals, diese Annäherung im wichtigsten Spezialfall zu unterbieten, wenn auch nur um eine Winzigkeit. Nun stellen die Professoren Jens Vygen von der Universität Bonn und András Sebö von der Universität Grenoble (Frankreich) einen neuen Rekord auf: Gemeinsam beschreiben sie einen völlig neuen Algorithmus, der die bisherige Bestmarke deutlich auf das 1,4-fache der optimalen Rundreisestrecke verkürzt.

Dabei brüteten die beiden Wissenschaftler während eines Forschungsaufenthaltes von Prof. Vygen in Grenoble gar nicht über dem Rundreiseproblem. „Wie so häufig war Zufall im Spiel“, erzählt der Mathematiker der Universität Bonn. Zusammen mit seinem Kollegen aus Frankreich ging er der Frage nach, wie sich zum Beispiel Strom- oder Telekommunikationsnetzwerke so optimieren lassen, dass es bei einem Kabelriss nicht zu einem Ausfall kommt. „Aber wie viele Mathematiker haben wir das Rundreiseproblem ständig im Hinterkopf“, berichtet Prof. Vygen. Deshalb lag es nahe, den Ansatz für das Netzwerkproblem auch auf die ähnliche Rundreisefrage anzuwenden.

Prof. Sebö und Prof. Vygen entdeckten eine neue Struktur: die sogenannte „Schöne-Ohren-Zerlegung“. Wie bei einer Zwiebel gingen die Wissenschaftler bei der Verbindung der Orte von außen nach innen vor. „Das funktioniert nur, wenn man die richtige Zwiebelstruktur erfasst hat – und die sieht man der Landkarte mit den Straßen und Orten zunächst nicht an“, sagt Prof. Vygen. Der Algorithmus aus Bonn und Grenoble mit den bislang besten Ergebnissen für das Rundreiseproblem lässt sich nicht nur in der Logistikbranche nutzen: Zum Beispiel bei Himmelsdurchmusterungen der Astronomen ist ebenfalls die kürzeste Route von Stern zu Stern gefragt.

Publikation: Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs, Fachjournal Combinatorica 34 (5) (2014), 597-629, online-Version vorab (DOI: 10.1007/s00493-011-2960-3)

Related Posts Plugin for WordPress, Blogger...