Schlagwort-Archiv: Universität

Ratgeber zum Studieren mit Kind erschienen

Die erste Ausgabe des Magazins „Studieren mit Kind in Leipzig. Eine Handreichung für studentische Eltern“ ist in dieser Woche erschienen. Der umfangreiche Ratgeber wurde vom Gleichstellungsbüro der Universität Leipzig in Kooperation mit dem Studentenwerk Leipzig herausgegeben. Er soll studierende Eltern bei der Vereinbarkeit von Familie und Studium unterstützen.

med_pic_20141029090310_9df2255ad6Im ersten Teil der Broschüre, der sich rund ums Studium dreht, finden sich Hinweise zu Beurlaubung und zum Teilzeitstudium ebenso wie Informationen des Studentenwerkes zu den Themen „Wohnen mit Kind“ und „Mit Kindern in der Mensa“ oder zur angebotenen Sozialberatung. Zudem geben die Rektorin der Universität Leipzig, Prof. Dr. Beate Schücking, die Geschäftsführerin des Studentenwerkes Leipzig, Dr. Andrea Diekhof, und der Gleichstellungsbeauftragte der Universität Leipzig, Georg Teichert, in Interviews Auskünfte über Familienfreundlichkeit an der Universität oder mögliche Unterstützungen für Studierende mit Kind.

In zwei weiteren Kapiteln stehen die Themen Finanzen und Betreuung im Mittelpunkt. Hier ist alles Wissenswerte zu BAföG, Elterngeld, Mutterschaftsgeld, Kindergeld, Wohngeld oder auch zu Sonderfonds und Vergünstigungen beziehungsweise zu Kitaplätzen, Tagespflege oder speziellen Betreuungsangeboten des Studentenwerks versammelt. Ein Anhang mit nützlichen Links und Angaben zu weiteren Veröffentlichungen rundet das umfassende Informationsangebot ab.

Das Magazin ist kostenfrei bei den Gleichstellungs- und Familienbeauftragten in allen Leipziger Hochschulen, im Familieninfobüro der Stadt Leipzig und in den Einrichtungen des Studentenwerks erhältlich.

Mathematiker stellen neuen Rekord auf

Prof. Dr. Jens Vygen vom Forschungsinstitut für Diskrete Mathematik der Universität Bonn. (c) Foto: Barbara Frommann/Uni Bonn
Prof. Dr. Jens Vygen vom Forschungsinstitut für Diskrete Mathematik der Universität Bonn. (c) Foto: Barbara Frommann/Uni Bonn

Wie lässt sich eine Rundreise organisieren?

Wie lässt sich eine Rundreise durch verschiedene Städte auf dem kürzesten Weg organisieren? Darüber zerbrechen sich nicht nur Paketdienste, Handlungsreisende und Touristen den Kopf, sondern seit vielen Jahrzehnten auch Mathematiker. Eine endgültige Lösung des Problems für eine große Zahl von Orten ist noch nicht gelungen, aber Forscher der Universitäten Bonn und Grenoble haben einen Algorithmus gefunden, der mit Abstand die beste Näherung liefert. Sie berichten in der Fachzeitschrift „Combinatorica“ über ihre Ergebnisse, deren Druckausgabe nun vorliegt.

Wie lässt sich die Reihenfolge für den Besuch mehrerer Orte so wählen, dass die gesamte Route möglichst kurz ist? „Dieses Rundreiseproblem klingt trivial, ist aber eine harte Nuss“, sagt Prof. Dr. Jens Vygen vom Forschungsinstitut für Diskrete Mathematik der Universität Bonn. Seit mehr als 60 Jahren zerbrechen sich Mathematiker darüber den Kopf – ohne es bislang gelöst zu haben. „Dieses populäre Problem hat seit Jahrzehnten eine zentrale Bedeutung für die mathematische Optimierung: Viele ursprünglich dafür entwickelte Methoden kamen später auch bei ganz anderen Problemen zum Einsatz“, erläutert sein Kollege Prof. Dr. András Sebö von der Universität Grenoble. „Es müssen beim Rundreiseproblem auch nicht unbedingt Städte sein, die durchlaufen werden sollen – sehr oft sucht man beispielsweise auch eine optimale Reihenfolge von Arbeitsschritten.“

Komplexität überfordert sogar Supercomputer

Mit wenigen Orten lässt sich die Aufgabe noch relativ einfach lösen, indem man die Weglängen aller möglichen Rundreisen berechnet und dann die kürzeste auswählt. Mit der Zahl der zu besuchenden Orte nimmt aber die Komplexität des Problems und damit die Rechenzeit rasch zu und überfordert dann auch die schnellsten Supercomputer. Mit 15 Städten gibt es bereits mehr als 43 Milliarden verschiedene Rundreisen, aus denen die kürzeste auszuwählen ist. Mit 18 Städten steigt die Zahl der Möglichkeiten auf über 177 Billionen an – und so weiter.

„Viele Mathematiker vermuten, dass das Rundreiseproblem für eine große Anzahl von Städten überhaupt nicht lösbar ist“, berichten die beiden Wissenschaftler. Das ist aber noch nicht bewiesen. Bislang ist es den Mathematikern jedoch gelungen, sich mit verschiedenen Verfahren der optimalen Route anzunähern. Es handelt sich dabei um Kompromisslösungen mit dem Vorteil einer überschaubaren Rechenzeit, aber Abstrichen hinsichtlich der kürzesten Weglänge. Wenn zum Beispiel vorgegeben ist, dass die Gesamtstrecke insgesamt doppelt so lang sein darf wie die optimale Route, dann lässt sich das relativ einfach umsetzen: Zu jedem Punkt ist dann ein Hin- und Rückweg erlaubt.

Neuer Rekord liegt beim 1,4-fachen der optimalen Strecke

Lange Zeit hielt Nicos Christofides den Rekord: 1976 veröffentlichte er einen Algorithmus, der eine Rundreise ergab, die maximal um die Hälfte länger als die optimale Tour ist. 35 Jahre später gelang es Mathematikern aus Nordamerika erstmals, diese Annäherung im wichtigsten Spezialfall zu unterbieten, wenn auch nur um eine Winzigkeit. Nun stellen die Professoren Jens Vygen von der Universität Bonn und András Sebö von der Universität Grenoble (Frankreich) einen neuen Rekord auf: Gemeinsam beschreiben sie einen völlig neuen Algorithmus, der die bisherige Bestmarke deutlich auf das 1,4-fache der optimalen Rundreisestrecke verkürzt.

Dabei brüteten die beiden Wissenschaftler während eines Forschungsaufenthaltes von Prof. Vygen in Grenoble gar nicht über dem Rundreiseproblem. „Wie so häufig war Zufall im Spiel“, erzählt der Mathematiker der Universität Bonn. Zusammen mit seinem Kollegen aus Frankreich ging er der Frage nach, wie sich zum Beispiel Strom- oder Telekommunikationsnetzwerke so optimieren lassen, dass es bei einem Kabelriss nicht zu einem Ausfall kommt. „Aber wie viele Mathematiker haben wir das Rundreiseproblem ständig im Hinterkopf“, berichtet Prof. Vygen. Deshalb lag es nahe, den Ansatz für das Netzwerkproblem auch auf die ähnliche Rundreisefrage anzuwenden.

Prof. Sebö und Prof. Vygen entdeckten eine neue Struktur: die sogenannte „Schöne-Ohren-Zerlegung“. Wie bei einer Zwiebel gingen die Wissenschaftler bei der Verbindung der Orte von außen nach innen vor. „Das funktioniert nur, wenn man die richtige Zwiebelstruktur erfasst hat – und die sieht man der Landkarte mit den Straßen und Orten zunächst nicht an“, sagt Prof. Vygen. Der Algorithmus aus Bonn und Grenoble mit den bislang besten Ergebnissen für das Rundreiseproblem lässt sich nicht nur in der Logistikbranche nutzen: Zum Beispiel bei Himmelsdurchmusterungen der Astronomen ist ebenfalls die kürzeste Route von Stern zu Stern gefragt.

Publikation: Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs, Fachjournal Combinatorica 34 (5) (2014), 597-629, online-Version vorab (DOI: 10.1007/s00493-011-2960-3)

Vesikel spielen wichtige Rolle für Funktion von Nervenzellen

Neuronen (blau), die Exosomen (grün) aufgenommen haben, zeigen eine verstärkte Präsenz des Enzyms Katalyse (rot), das vor Peroxiden schützt. Foto: Uni Mainz
Neuronen (blau), die Exosomen (grün) aufgenommen haben, zeigen eine verstärkte Präsenz des Enzyms Katalyse (rot), das vor Peroxiden schützt. Foto: Uni Mainz

Für die Funktion von Nervenzellen spielen kleine Vesikel, die schützende Stoffe enthalten und sie an die Nervenzellen abgeben, offenbar eine wichtige Rolle. Wie Zellbiologen der Johannes Gutenberg-Universität Mainz (JGU) festgestellt haben, können Nervenzellen die Minivesikel von benachbarten Gliazellen anfordern und sich so gegen Stress und andere ungünstige Bedingungen wappnen. Die Vesikel, Exosomen genannt, scheinen dabei die Neuronen auf verschiedenen Ebenen zu stimulieren: Sie beeinflussen die elektrische Erregungsleitung, die biochemische Signalübertragung und die Genregulation. Exosomen sind damit multifunktionale Signalgeber, die einen bedeutenden Einfluss auf das Gehirn ausüben können.

Kultivierte Neuronen auf einem Chip zur Multi-Elektroden-Ableitung: Die Elektroden registrieren die elektrischen Impulse der Neuronen. Foto: Uni Mainz
Kultivierte Neuronen auf einem Chip zur Multi-Elektroden-Ableitung: Die Elektroden registrieren die elektrischen Impulse der Neuronen. Foto: Uni Mainz

Die Mainzer Wissenschaftlerinnen und Wissenschaftler haben in einer früheren Studie bereits beobachtet, dass Oligodendrozyten nach entsprechender Stimulation Exosomen ausschütten, die von den Neuronen aufgenommen werden und die neuronale Stresstoleranz verbessern. Oligodendrozyten sind eine Art von Gliazellen, die um die Axone der Nervenzellen eine isolierende Myelinhülle aufbauen. Die Exosomen transportieren protektive Proteine wie Hitzeschockproteine, glykolytische Enzyme und Enzyme, die den oxidativen Stress abbauen, von einem Zelltyp zum anderen, übertragen aber auch genetische Informationen in Form von Ribonukleinsäuren.

„Wie wir jetzt in Zellkulturen festgestellt haben, agieren die Exosomen auf einer ganzen Bandbreite“, erklärt Dr. Eva-Maria Krämer-Albers den Prozess. Mit ihrer Versorgungsleistung regen die kleinen Bläschen die Nervenzellen nicht nur zu einer stärkeren elektrischen Aktivität an, sondern beeinflussen sie auch auf biochemischer und genregulatorischer Ebene. „Die Breite der Wirkungsweise der Exosomen ist beeindruckend“, so Krämer-Albers. Die Wissenschaftler hoffen, dass das Verständnis dieser Prozesse dazu beitragen kann, neue Wege für die Behandlung neuronaler Erkrankungen aufzuzeigen. Im nächsten Schritt soll die Wirkung der Vesikel im Gehirn von lebenden Organismen dargestellt werden.

An der Studie beteiligt waren zudem die Arbeitsgruppe um Univ.-Prof. Dr. Heiko Luhmann am Institut für Physiologie der Universitätsmedizin Mainz sowie Bioinformatiker des Instituts für Molekulare Biologie (IMB).

Veröffentlichung
D. Fröhlich et al., Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation, Philosophical Transactions of the Royal Society B 369:1652, 18. August 2014,
DOI:10.1098/rstb.2013.0510

Wie das Gehirn das Scharf-Sehen vorgaukelt

Der Daumennagel am Ende eines ausgestreckten Arms: Das ist der Bereich, den das Auge tatsächlich scharf sehen kann. Wie der Rest der Welt trotzdem scharf erscheint, haben Forscher der Universität Bielefeld untersucht. Foto: Universität Bielefeld
Der Daumennagel am Ende eines ausgestreckten Arms: Das ist der Bereich, den das Auge tatsächlich scharf sehen kann. Wie der Rest der Welt trotzdem scharf erscheint, haben Forscher der Universität Bielefeld untersucht. Foto: Universität Bielefeld

Wer glaubt, die Welt um sich herum
wirklich scharf zu sehen, der irrt

Wer glaubt, die Welt um sich herum wirklich scharf zu sehen, der irrt. Tatsächlich können unsere Augen nur einen Bruchteil der Umgebung präzise abbilden. Wie das Gehirn das Scharf-Sehen vorgaukelt, das haben Psychologen der Universität Bielefeld mit einer Experimentreihe untersucht. Ihre Ergebnisse stellen sie in der Oktober-Ausgabe des Fachmagazins „Journal of Experimental Psychology: General“ vor. Ihr zentraler Befund: Beim Sehen greift das Nervensystem auf frühere Seherfahrungen zurück, um vorauszusagen, wie unscharfe Objekte scharf aussehen würden.

„In unserer Studie beschäftigen wir uns mit der Frage, warum wir glauben, die Welt scharf zu sehen“, sagt Dr. Arvid Herwig von der  Forschungsgruppe Neurokognitive Psychologie der Fakultät für Psychologie und Sportwissenschaft. Die Gruppe gehört auch zum Exzellenzcluster Kognitive Interaktionstechnologie (CITEC) der Universität Bielefeld und wird von Professor Dr. Werner X. Schneider geleitet.

Allein die Fovea – die zentrale Stelle der Netzhaut – kann Objekte scharf abbilden. Deshalb dürften wir eigentlich nur einen schmalen Bereich unserer Umwelt wirklich präzise sehen. Dieser Bereich entspricht etwa dem Daumennagel am Ende eines ausgestreckten Arms. Alle Seheindrücke, die außerhalb der Fovea auf die Netzhaut treffen, werden hingegen zunehmend unscharf abgebildet. Dennoch haben wir für gewöhnlich den Eindruck, einen Großteil unserer Umwelt scharf und detailliert wahrzunehmen.

Mit einer Reihe von Lernexperimenten sind Herwig und Schneider diesem Phänomen auf den Grund gegangen. Ihr Ansatz geht davon aus, dass Menschen im Laufe ihres Lebens in unzähligen Blickbewegungen lernen, den unscharfen Seheindruck von Objekten außerhalb der Fovea mit dem scharfen Seheindruck nach der Blickbewegung zum interessierenden Objekt zu verknüpfen. So wird zum Beispiel der unscharfe Seheindruck eines Fußballs (verschwommenes Bild des Fußballs) mit dem scharfen Seheindruck nach der Blickbewegung zum Fußball verknüpft. Sieht eine Person im Augenwinkel unscharf einen Fußball, vergleicht ihr Gehirn dieses aktuelle Bild mit gespeicherten Bildern von unscharfen Objekten. Findet das Gehirn ein passendes Bild, ersetzt es den unscharfen Eindruck durch ein präzises Bild aus dem Gedächtnis. Der unscharfe Seheindruck wird ersetzt, bevor sich die Augen tatsächlich bewegen. Die Person glaubt somit, dass sie den Ball bereits genau erkennen kann, obwohl das noch nicht der Fall ist.

Die Psychologen belegen ihren Ansatz mit Eyetracking-Experimenten. Mit der Eyetracking-Technik lassen sich Blickbewegungen mit Hilfe einer speziellen Kamera präzise messen. Die Kamera nimmt 1000 Bilder pro Sekunde auf. Die Wissenschaftler haben in ihren Experimenten schnelle sprunghafte Augenbewegungen (Sakkaden) von Versuchspersonen aufgezeichnet. Unbemerkt von den meisten Versuchsteilnehmern wurden dabei bestimmte Objekte während der Blickbewegung verändert. Das Ziel war, dass die Testpersonen bislang unbekannte neue Verknüpfungen von außerfovealen und fovealen, also von unscharfen und scharfen Seheindrücken erlernen. Anschließend wurden die Personen gebeten, visuelle Merkmale von außerfovealen Objekten anzugeben. Das Ergebnis: Die Verknüpfung eines unscharfen Seheindrucks mit einem scharfen Seheindruck kam bereits nach wenigen Minuten zustande. Der unscharfe Seheindruck wurde den neu erlernten scharfen Seheindrücken ähnlicher.

„Die Experimente zeigen, dass unser Seheindruck wesentlich von gespeicherten Erfahrungen in unserem Gedächtnis abhängt“, sagt Arvid Herwig. Laut Herwig und Schneider dienen diese Erfahrungen der Vorhersage zukünftiger Handlungseffekte („Wie würde die Welt nach einer weiteren Blickbewegung aussehen“). Oder anders formuliert: „Wir sehen nicht die aktuelle Welt, sondern unsere Vorhersagen“.

Originalveröffentlichung:

Arvid Herwig, Werner X. Schneider: Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General, http://dx.doi.org/10.1037/a0036781, erschienen im Oktober 2014 (Print-Ausgabe).

Weitere Informationen im Internet:
www.uni-bielefeld.de/psychologie/ae/Ae01

Related Posts Plugin for WordPress, Blogger...